Monodromy and K-theory of Schubert Curves via Generalized Jeu de Taquin
نویسندگان
چکیده
Schubert curves are the spaces of solutions to certain one-dimensional Schubert problems involving ags osculating the rational normal curve. e real locus of a Schubert curve is known to be a natural covering space of RP1, so its real geometry is fully characterized by the monodromy of the cover. It is also possible, using K-theoretic Schubert calculus, to relate the real locus to the overall (complex) Riemann surface. e monodromy operator turns out to be the commutator of jeu de taquin rectication and promotion on certain skew Young tableaux. We give a new local algorithm for computing this commutator, and use it to provide purely combinatorial proofs of some of the connections to K-theory. If time permits, we will also describe some of the geometric consequences of our combinatorial results. is is joint work with Jake Levinson.
منابع مشابه
A Jeu De Taquin Theory for Increasing Tableaux, with Applications to K-theoretic Schubert Calculus
We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-...
متن کاملJeu de taquin and a monodromy problem for Wronskians of polynomials
The Wronskian associates to d linearly independent polynomials of degree at most n, a non-zero polynomial of degree at most d(n−d). This can be viewed as giving a flat, finite morphism from the Grassmannian Gr(d, n) to projective space of the same dimension. In this paper, we study the monodromy groupoid of this map. When the roots of the Wronskian are real, we show that the monodromy is combin...
متن کاملK-theory of Minuscule Varieties
Based on Thomas and Yong’s K-theoretic jeu de taquin algorithm, we prove a uniform Littlewood-Richardson rule for the K-theoretic Schubert structure constants of all minuscule homogeneous spaces. Our formula is new in all types. For the main examples of Grassmannians of type A and maximal orthogonal Grassmannians it has the advantage that the tableaux to be counted can be recognized without ref...
متن کاملK-theoretic Schubert calculus for OG.n; 2nC 1/ and jeu de taquin for shifted increasing tableaux
We present a proof of a Littlewood–Richardson rule for the K-theory of odd orthogonal Grassmannians OG.n; 2n C 1/, as conjectured by Thomas–Yong (2009). Specifically, we prove that rectification using the jeu de taquin for increasing shifted tableaux introduced there, is well-defined and gives rise to an associative product. Recently, Buch–Ravikumar (2012) proved a Pieri rule for OG.n; 2nC1/ th...
متن کاملGrowth diagrams for the Schubert multiplication
We present a partial generalization to Schubert calculus on flag varieties of the classical Littlewood-Richardson rule, in its version based on Schützenberger’s jeu de taquin. More precisely, we describe certain structure constants expressing the product of a Schubert and a Schur polynomial. We use a generalization of Fomin’s growth diagrams (for chains in Young’s lattice of partitions) to chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015